
Learning Elementary Musical Programming with Extempore:
Translating Arvo Pärt's Fratres into Live Code Snippets

Fabia F. A. E. Bertram
University of Cologne, Germany

fabia.bertram@yahoo.de www.soundcloud.com/fabiabertram

In: Jakubowski, K., Farrugia, N., Floridou, G.A., & Gagen, J. (Eds.)
Proceedings of the 7th International Conference of Students of Systematic Musicology (SysMus14)

London, UK, 18-20 September 2014, http://www.musicmindbrain.com/#!sysmus-2014/cfmp
This paper is released under a CC BY-NC-ND Creative Commons License (http://creativecommons.org/licenses/).

Live coding is a programming practice that works through the real-time implementation of code (Wang and Cook
2003; McLean 2004) and thus vastly changes the perception of conventional computer programming in terms of meld-
ing design, coding and debugging phases (Fay-Wolfe 2003) into one single process. This means that immediately
putting code into action and turning out results enables a direct verification of whether a program works at all, and if
the results make sense as expected or need to be modified. Musical live coding may therefore motivate people through
apprehending the skill of learning how to code their own improvisations or compositions. A wider margin of people,
such as musicians or people with augmented musical interest in general, is reached, which is interesting from an edu-
cational perspective. But live coding contains many more interesting properties than just these pedagogical ones
(Blackwell 2013). The Dagstuhl Report released at the end of 2013 offers a great overview of the different topics of
interest at the moment. Further investigative questions relevant to the live coding sector will further be explored in the
adjacent Master's thesis by he author.
The topic of this paper concerns the implementation of a given musical composition that is suitable to be coded. Fra-
tres by Arvo Pärt is based on a simple mathematical structure (Åkesson 2007, Kautny 2005) that provides a live coder
with a variety of tasks for creating musical structures (melodies, harmonies, rhythms). In addition to an overview
about the question of why it may be interesting to work with pre-existing compositions in addition to tutorials, musical
programming solutions will be provided succeeded by musical analysis of the fundamental composition.
This paper is a portion of the second part of the author's Master's thesis that documents an auto-immersion into the
study of a live coding language – here Extempore – and aims to illuminate elementary musical programming.

	

This is a derivation of the practical research
on musical live coding with Extempore per-
formed in the context of a Master's thesis
from the perspective of a programming be-
ginner.1 The thesis will consist of two parts, a
historical disquisition of the live coding
movement as well as a practical part docu-
menting the author’s own endeavors coding
with Sorensen's programming environment
and language, Extempore.2

Reading and studying the tutorials, both writ-
ten and recorded, enhanced the motivation to
somehow apply the accumulated knowledge.
As previous, small improvisations were not
that satisfying, the search for an adaptable
composition ensued. The minimalistic Fratres
by Arvo Pärt seems to fit into that category.

In the following, after emphasizing the peda-
gogical aspects of live coding and quickly in-
troducing Extempore, the composition Fratres
will be musically analyzed. Then, possible
reasons as to why the translation of existing
musical material during the practical learning
phase may make sense in addition to tutorial-
based studies will be reiterated. Finally and
before concluding the paper, programming
solutions for the particular piece are offered
in Extempore.

Educational live coding and
Extempore

Live coding: Dagstuhl Report 2013

SysMus14 – International Conference of Students of Systematic Musicology - Proceedings

	

	 2

The 2013 Dagstuhl Seminar concerning the
Collaboration and learning through live cod-
ing investigated the characteristics, purposes,
current situation and possible future direc-
tions of live coding based on the three per-
spectives - humanities, computer education
and software engineering (Blackwell 2013).
Next to the obvious notion of live coding as
art, the implementation of live code may en-
hance computer-programming processes or
provide new computational solutions in a
computerized society such as the present
(Ibid.).

As the process of computer software engi-
neering in recent years has shifted towards
more inclusive cooperation of developers,
designers and customers, live coding offers
an effective and simple way of understanding
this evolution, as it enables collaboration be-
tween different artists as well as involving
their audiences through the presentation of
minimalistic tools that entrain interest while
entertaining (Ibid.)

Live coding offers great tools for computer
science education providing direct sound out-
put according to the functions programmed.
Dagstuhl confirmed it as an affective teaching
strategy. Furthermore, students are motivat-
ed to investigate and understand the pro-
cesses behind computer programming on
deeper levels than the oftentimes focus on
only a trivial “occupation with the operation
of end-user application software” (Ibid.).

Extempore

The live coding environment and program-
ming language used in the context of this
master's thesis is Andrew Sorensen's 3 Ex-
tempore. Extempore is Sorensen’s second
live coding environment after Impromptu.4 It
works through the hybridization of Scheme5
and xtlang (Swift 2011-2014). xtlang com-

bines “the high-level expressiveness of Lisp
with the low-level expressiveness of C”
(Sorensen 2013). Scheme being the funda-
mental environment, it is of great importance
to individually study its structural makeup
and to learn its necessary building blocks –
functions, etc. One example is the Scheme-
innate lambda keyword that introduces a pro-
cedure all the while reminiscent of Church's
lambda calculus (Dybvig 2009).6

Why translate compositions into
code?

Taking each musical element from a composi-
tion singularly and coding corresponding al-
gorithms forms a guided collection of solu-
tions to specific problems while showcasing
the programmer's current level of ability. Dif-
ferent coding structures have to be applied to
resolve each musical task. The memorization
of previously learned algorithms is practiced
which leads to both a deeper knowledge and
a better overall understanding of the learned
materials. It also brings them back to the
surface to become part of the programmer's
active knowledge. The “tested” materials will
be more readily usable in the future. A piece
may harbor musical elements that require a
combination of different programming struc-
tures, thus improving programming abilities
by adding new knowledge. Modified, these
tools can later always be reapplied to other
pieces or emerging improvisational ideas.
Translating a score's musical elements can be
compared to solving a cumulative math prob-
lem in a test situation: previously learned
strategies are applied or recombined to solve
a problem at hand.

The strategy of using existing music does not
stray far from the obvious studying of tutori-
als. It tests or motivates the coding of differ-
ent structures and, at the same time, pro-

SysMus14 – International Conference of Students of Systematic Musicology - Proceedings

	

	 3

vides deeper and step-by-step insight into
the building blocks of a score alongside en-
riching one’s own compositions or improvisa-
tions. Being able to apply the tutorial materi-
als in such a new (but guided) surrounding
can be compared to playing and practicing a
musical work that contains specific technical
difficulties. Instead of concentrating on purely
technical exercises, the technical parts are
embedded into a more entertaining situa-
tion.7

Transforming a musical score into coded
segments with the aim towards a fully coded
version is an extra credit exercise which ful-
fills two conditions that may be neglected
when coding strictly tutorial-based or solely
jumping from tutorials to improvisations: On
one hand, the student will finally have a cod-
ing performance that can stand on its own
while having practiced or improved, or even
acquired new programming skills. This may
motivate further study of the environment
and programming language. On the other
hand, students coming from more traditional
music backgrounds with little expertise in
musical improvisation skills will not have to
deal with losing time over finding their own
musical ideas on top of dealing with the pro-
gramming aspect. They can focus their atten-
tion on the acquisition of programming skills.

In the end, at best one will have a coded ver-
sion of the inspirational composition. But
even if it is not possible to fully translate eve-
ry part of the piece, be it due to the student's
level of expertise or other factors, at worst, a
high amount of learning and recollection will
have taken place with more detailed infor-
mation of what procedures to revise.

Fratres – musical analysis

Fratres by Arvo Pärt is considered an im-
portant example of Pärt's style of composi-
tion, tintinnabuli (Åkesson 2007, Kautny
2005). 8 Although minimalist, the repetitive
juxtaposition of choral and percussive mo-
ments amount to a total duration ca. 11
minutes. Since the first version's appearance
in 1977, more have emerged in different ar-
rangements and instrumentations such as
duets (e.g. violin/piano) and other ensem-
bles.

The piece essentially consists of two musical
components, a choral segment surrounded by
a percussive motif, that are repeated
throughout the piece. The structure of the
chorale’s chord progression does not change
structurally, essentially giving Fratres its re-
petitive character. But change occurs none-
theless; the choral is gradually transposed
down a third for each segment's repetition
following the harmonic D minor scale's key
structure.9 As a clarifying example, the top
voice starts on E in the first choral, on C# in
the second, on A in the third and so on.

The three-voice choral consists of two
parts with each three measures of four, six
and eight chords set in a changing time sig-
nature of 7/4, 9/4 and 11/4. The chords can-
not be analyzed following traditional western
harmonic rules.

An eight-chord-progression is formed with
top and bottom voices based on the D minor
scale and the middle voice filling in notes of
the A minor triad. The first four notes of the
scale-driven voices directly move down, fol-
lowed by a cut in which the rest of the scale
is moved up one octave to complete the scale
in the same downward motion. Due to the
diatonic scale character in which every eighth
step of a scale has identical note character

SysMus14 – International Conference of Students of Systematic Musicology - Proceedings

	

	 4

(D, E, F, G, A, B♭, C#, then again D, E, F...),
the chorale’s chord progression finishes on
the same note it started on.

Figure 1. The A-triad (without C) and the D minor scale.
Both are the fundament of Pärt’s composition. While
drone sounds and the middle voice of the chorale stay on
sounds of the A minor triad (middle voice includes C),
the top and bottom voices of the chorale move step-wise
through the downward harmonic D minor scale. Both
voices, however, do not start on D itself. The top voice
starts on E, the bottom voice on C#.

The combination of voices that freely move in
melody lines (top and bottom voices) with
others that only cover one triad’s sounds
(middle voice) is the fundament of Pärt's tin-
tinnabuli style of composition (see also end-
note 8). Due to the A minor triad's C's friction
with the D minor scale's C#, a floatation of
the tonal center between A minor and A ma-
jor occurs.

The chorale's first part is built gradually com-
ing in from the eight-chord-progression's
outer sides. For the first measure with four
chords, chords 1,2,7 and 8 are taken (see
numbered chords in Fig. 2) while chords 3, 4,
5 and 6 are left out. For the second measure
with its six chords, 1,2,3,6,7 and 8 are taken
while 4 and 5 are still not used. All eight
chords are finally used in succession in the
final measure (Ibid.).

Figure 2. The un-rhythmized eight-chord progression of
the chords used for each of the three segments of the
chorale parts 1 and 2. Top and bottom voice clearly show
a scale-like movement in harmonic D minor while the
middle voice is restricted to the notes of the A minor
triad (A, C, E). The color-coding marks the chords used
in the different measures of the chorale: Blue for the
chords (1,2,7,8) of the first and fourth measures, red for
the chords (1,2,3,6,7,8) of the second and fifth
measures, and green (1,2,3,4,5,6,7,8) for the third and
sixth measures (retrogradation clarified in fig. 3).

The order of the chords in the chorale’s se-
cond part is a retrograde of the chords in the
first part, although the rhythm is not re-
versed but stays the same (Fig.3).

��

��

��

�

�

��

�

�

�

��

�

�

��

��

�

�

�

�

�

�

�

�

�

��
�

� �

� �

��

�

�

�

�

��

�

�

�

�

�

�

�

��

�

�

��

�

��

�

�

��
�

� �

� �

Figure 3. The retrograde character of the chorale’s se-
cond part to the first is shown through measure 3 (first
part, choral) and measure 6 (second part, choral). The
rhythmical structure is not inverted. It stays the same
and is only repeated.

The percussive motif is a simple twice-
repeated percussive rhythm of a half note
followed by both a quarter and a dotted half
note set in 6/4-time signature (Fig. 4) set
between each choral segment. It is accompa-
nied by drone sounds of A minor that sound
throughout the entire piece.

Figure 4. The percussive motif appearing before and
after each choral segment.

Connecting score and coding

Due to its simple mathematical formula10, a
translation of Pärt's piece into algorithms

SysMus14 – International Conference of Students of Systematic Musicology - Proceedings

	

	 5

seems possible. Listening to recordings of
Fratres, an array of musical elements can be
deduced – from the use of instruments to the
building of melodic, harmonic and rhythmical
structures. It is possible to code close-to-
score, but also to venture out and create
suitable musical structures that may help an
overall understanding of the score, such as a
simple D minor scale or an A minor chord.
Figure 5 provides an overview of the two ver-
sions for comparison.

In its totality, the musical elements of Arvo
Pärt's Fratres useful for programming can be
concluded to be

• the creation of different external or inter-
nal instruments as well as their connection
to the audio output

• drone sounds of the A minor triad

• a percussive loop that plays throughout
the piece

• a rhythmized three-voice choral built on
the juxtaposition of D and A minor that
can be modified dynamically to ensure a
dramaturgical arch during the performance

Figure 5. A juxtaposition of the two Fratres versions,
the upper being the one for strings and percussion
(1977), the lower a possible coded version as discussed
in this paper.

Fratres – source code

Setup. The first steps concern the program's
setup, which means the creation of all in-
struments needed as well as possibly equip-
ping them with the associated samplers and
consequently connecting all instruments to
the DSP11 output so that a sound can be
heard.

An important detail is that Extempore differs
between internal and external instruments.
Different commands and libraries are used.
Whereas a simple synth (internal instrument)
is created via the “define-instrument”
command, an external instrument is created
through “define-sampler”. Also the required
libraries that need to be loaded into the pro-
gram differ, which either results in

(sys:load “libs/core/instruments.xtm”)
(define-instrument synth synth_note_c synth_fx)

or

(sys:load “libs/external/instruments_ext.xtm”)
(define-sampler sampler sampler_note_hermince_c
sampler_fx)

with the loading of respective folders contain-
ing sampler files (not needed in internal in-
struments)

(load-sampler sampler “/Users/<name>/<path to
sampler folder>”)

To be able to set up a sampler (external in-
strument), an additional parser-function
needs to be included that organizes the dif-
ferent sampler files into an ordered a usable
list (Swift 2011-2014).

To conclude the setup and to be able to hear
the sound structures that will subsequently
be programmed, the created instruments

SysMus14 – International Conference of Students of Systematic Musicology - Proceedings

	

	 6

need to be connected to the DSP output. This
is done via the following algorithm:12

(bind-func dsp:DSP
(lambda (in time chan dat)
(cond ((< chan 2.0)
 (+ (synth in time chan dat)
 (drums in time chan dat)))
(else 0.0))))

(dsp:set! Dsp)

From now on, a trial of each algorithm by
itself will be possible. The setup has provided
the system with a valid connection to gener-
ate sound output.

Drone sounds. A basic solution to playing
the long A minor triad sounds can be
achieved through the “play-note” function.
This function does exactly what its name
says, with the corresponding parameters de-
fining at what time the sound should start,
which instrument in which pitch and with
which volume should resound as well as for
how long the sound is supposed to last. As
the drone sound is an element that sounds
throughout both elements of the composition,
this solution may be adequate enough. To
form a drone sound of more than one sound,
as many “play-note” functions as necessary
have to be instilled. Here, that would be two,
A minor’s A and its fifth, E. The friction be-
tween C# and C of A major and A minor is
created through the co-sounding of the cho-
rale’s melody with the middle voice. As it is
easily possible to use a few “play-note”
functions at once, it might be best to still
group them together in the program for easy
structure and access. The drone sounds' vol-
ume should be chosen in a range that will not
overpower the choral segment that is sup-
posed to appear later on.

;; play drones A2 and E3
(play-note (now) synth 45 50 (* 10.0 *minute*))
(play-note (now) synth 52 50 (* 10.0 *minute*))

Beat pattern. To program the rhythmical
structure, the creation of a sampler-based
drum instrument is necessary (external in-
strument).13 A pattern consisting of a half, a
quarter and a dotted half note should be pro-
grammed into a loop. This will not only result
in its two-time repetition between the cho-
rales as in the original score, but in a contin-
uous beat that plays throughout the piece.14
Although easily programmable, the original
rhythmic pattern might sound quite harsh
when combined with the chorale.

Therefore, a modified beat may blend in more
easily.15 This structure is a pattern of four
consecutive rhythmized notes, two halves
each followed by one quarter note (see fig.6).

Figure 6. The modified beat pattern used instead of the
original one (fig.4).

;; needed tempo (metronome)
(define *metro* (make-metro 98))

;; list with modified rhythmic pattern
(define *metre1* (make-metre '(4 2 4 2) 0.5))

;; beat pattern
(define metre-test3
 (lambda (time)
 (play-note (*metro* time) drums
 (random (cons .8 *gm-kick*) (cons
.2 *gm-kick*))
 (+ 40 (* 20 (cos (* 2 3.441592
time))))
 (random (cons .8 500) (cons .2
2000)))
 (if (*metre1* time 1.0)
 (begin (play-note (*metro* time) drums
gm-kick 80 10000)
 (play-note (*metro* time) drums
gm-kick 80 100000)))
 (callback (*metro* (+ time 0.2)) 'metre-
test3 (+ time 0.25))))

(metre-test3 (*metro* 'get-beat 1.0))

SysMus14 – International Conference of Students of Systematic Musicology - Proceedings

	

	 7

The following structure will play an underlying
metronome with above the pattern of half,
quarter, half and again quarter notes.

The 6/4-time signature of the beat pattern
should not collide with the twice repeated
(7/4 + 9/4 + 11/4)-structure of the chorale
segment as the latter unfolds on 54 quarter
beats in total. The beat loop’s still runs on
6/4, it should be able to play nine times
through without mathematically disturbing a
single run of the chorale. Problems with the
friction between the different time signatures
at hand should be solved via adjustment of
the drums' volume to lower-to-medium vol-
ume, so that the percussive motif disappears
into the background when the choral segment
appears.16 Pärt’s tempo is “98”. Extempore’s
internal metronome runs on 60bpm. To be
able to play the beat pattern (and later also
the chorale structure) in the right tempo, a
new metronome needs to be imposed onto
the program. This will be accomplished by the
“make-metro”-function (see coding section
above).

Chorale. Here, it is necessary to program
three individually pitched voices that have
the same rhythmical structure and need to be
played simultaneously. All voices are melo-
dies. According to the tutorials, there are
different possibilities to how melodies as well
as chords can be programmed (Swift 2011-
2014). For the chord progression, one may
attempt to create a chord sequence using the
“play-note” function with different time or-
ders. The procedure reads all pitches and
plays them according to their distance to
“(now)”. This procedure would, however, be
very tedious.

Another way would be to include the “play-
note” command into a loop function similar
to the percussive motif's structure, this time
playing a pitched melody with rhythmical an-

notations (Ibid.). To do so, two ordered lists
are needed (pitch list; rhythm list). The loop
will read the first pitch of the sequence and
output it with its corresponding time, then
proceed to the next one until all pitches from
the pitch list are used up. After this, the loop
stops.17 Volume and duration of the sounds
can stay the same throughout the sequence.

(define chorale
 (lambda (time plst rlst)
 (play-note (*metro* time) synth (car plst)
120 33150)
 (if (not (null? (cdr plst)))
 (callback (+ (*metro* time) (* .5 (car
rlst))) 'chorale (+ time (car rlst))
 (if (null? (cdr plst))
 '(car plst)
 (cdr plst))
 (if (null? (cdr rlst))
 '(44100)
 (cdr rlst))))))

All three voices use the same procedure,
which can be effectuated more than once
simultaneously. Therefore, only the pitch list
will be modified when calling the function
“chorale” according to the voice it is sup-
posed to output (top; middle; bottom). The
rhythm list stays the same for all three voices
and thus

;; rhythm list for chorale, parts 1 and 2

(2 1 1 3 2 1 1 1 1 3 2 1 1 1 1 1 1 3
2 1 1 3 2 1 1 1 1 3 2 1 1 1 1 1 1 3)

is to be copied into each rhythm list. The
called function for the top voice would look
like this:

(chorale (*metro* ‘get-beat 1.0)
'(76 74 77 76
76 74 73 79 77 76
76 74 73 70 81 79 77 76
76 77 74 76
76 77 79 73 74 76
76 77 79 81 70 73 74 76)
'(2 1 1 3 2 1 1 1 1 3 2 1 1 1 1 1 1 3
2 1 1 3 2 1 1 1 1 3 2 1 1 1 1 1 1 3))

The “chorale”-function also refers to the
“*metro*” of 98 that had already been im-
plemented during the building of the beat
pattern. It is important to include it in this

SysMus14 – International Conference of Students of Systematic Musicology - Proceedings

	

	 8

function as well to rightly align both func-
tions.18

Summary. The result is three different musi-
cal structures (drone sounds, beat pattern,
choral) executed by different instruments
(drums – sampler; synth – internal instru-
ment) that are correctly connected to the
audio output. A first trial of all coded ele-
ments of Fratres is now possible.

Further research and questions

There are a few more musical elements that
are derivatives of the Fratres' score:

• the modification of the chorale’s code to
enable a transposition down a third for
each choral segment (mentioned above in
the musical analysis)

• heard in the ensemble versions with solo
instrument: differently paced arpeggiated
figures connected to the choral and playing
simultaneously to it)

It might be useful to figure out how to com-
press the chorale so that it fits into just one
single structure instead of the three single
melodies mentioned above. For this purpose,
it should also be taken into account that the
bottom voice mimics the top one so that a
derivation of the bottom from the top voice
falls into the same problem situation. The
single structure should, furthermore, be able
to transpose the pitches of the top and bot-
tom voices down a third according to the D
minor scale and rearrange the A minor triad
pitches of the middle voice to fit each new
transposed segment. 19 The most probable
strategy seems to be to convert the chorale’s
pitch list of the top voice into a pitch class
structure that is generally scaled to the har-
monic D minor scale. The bottom voice

should do the same motion as the top, but
transposed down three half steps, then an
octave. Then, also the transposition of the
entire chorale sections needs to be ad-
dressed.20

When hearing other versions of Fratres, for
example the violin and piano version, the
violin's introductory variation on the choral
sequence stands out. It consists of the choral
as arpeggiated chords. It may be interesting
to build an arpeggio sequence that plays the
sum of the three voices as similar arpeggiat-
ed chords without changing the overall
rhythmical proportions of the choral.

It may also be plausible to further divide the
arrangement by using an organ21 for the cho-
ral, or playing the arpeggios with a piano or
string instrument sampler. I may come back
to these tasks later when I will have gained
more insight into the Scheme programming
language as well as more practical expertise
in Extempore.

Summary and conclusion

As shown, Fratres by Arvo Pärt is a good ex-
ample of a composition that can be turned
into code. Its simple minimalist structure
provides an array of different tasks that allow
practice of the materials learned in tutorials
and result in an achievable performance early
on.

Extempore offers a great fundament to build-
ing solutions for different musical ideas or
necessities. The tutorials provided by Swift
explain various ways of implementing struc-
tures.22 Decisions have to be made concern-
ing the translation of the score into code
based on what is thought to best suit each
musical element and gradually learn how to

SysMus14 – International Conference of Students of Systematic Musicology - Proceedings

	

	 9

program more elegantly. This emphasizes live
coding's ability to further computer science
education.

Translating an existing score might move
away from the current notion of a live coder
creating improvised material from scratch in
front of an audience. Nonetheless, it does
offer a lot of benefits for learning purposes.
This starts by analyzing the piece that is sup-
posed to be transferred. The musical dissec-
tion may provide better insight into musical
elements that make up a successful composi-
tion. Each piece of music that is used creates
its own array of musical elements that have
to be implemented. These elements present
problems that may go beyond what an indi-
vidual would think of when improvising. They
provide time to figure out solutions while try-
ing out different strategies. Knowledge is
strengthened and adapted. There is no need
to expend or divide energies to create im-
provisation ideas; all focus goes towards the
implementation into code. Finally, the consol-
idation of all structures derived from the
score23 may lead to a successful early per-
formance that motivates future endeavors
and provides a cementation of acquired
knowledge.

Acknowledgements. I want to thank all
people that have accompanied my thesis pro-
cess so far: Prof. Dr. Uwe Seifert for letting
me do the very new and exciting project of
researching live coding under his guidance,
Andrew Sorensen for providing advice con-
cerning my chosen environment and lan-
guage as well as Ben Swift for the well-
explained tutorials that are available online
and for the readily given advice to a “newb”
such as myself. I also want to thank the Ex-
tempore Google-group for its animated dis-
cussions of different subject matters concern-
ing language and community and my family
and friends for providing loads of emotional

support as well as critical comments. An hon-
ourable mention goes to the series Rectify24
whose final episode provided inspiration to
this project. Last but not least, I want to
thank the SysMus-conference for providing a
platform to my first live coding steps.

References

Åkesson, L. (2007). Fratres. Personal
Homepage. Retrieved from
http://linusakesson.net/music/fratres/in
dex.php

Blackwell, McLean, A., Noble, J., & Rohrhu-
ber, J. (2013). Collaboration and learn-
ing through live coding. Dagstuhl Re-
ports, 3(9), 130-168. Leibniz Center for
Computer Science. Dagstuhl Publishing.
Germany.

Dybvig, R. (2009). Procedures and variable
bindings – Lambda. The Scheme Pro-
gramming Language. 4th Ed. MIT Press.
Cambridge, Mass., USA.

Kautny, O. (2005). Arvo Pärt. MGG Die Musik
in Geschichte und Gegenwart: allge-
meine Enzyklopädie der Musik; Perso-
nenteil. 2nd Ed, 146-151. Published by
Ludwig Finscher. Bärenreiter. Kassel.

McLean, A. (2004). Hacking Perl in Night
clubs. Retrieved from
http://www.perl.com/pub/a/2004/08/3
1/livecode.html

Smith, S. (1997). Digital Signal Processors.
The Scientist and Engineer’s Guide to
Digital Signal Processing, 503-534. Cali-
fornia Technical Pub.

Sorensen, A. (2010). Impromptu Homepage.
Retrieved from
http://impromptu.moso.com.au/

Sorensen, A. (2011). Extempore Homepage.
Retrieved from
http://extempore.moso.com.au/

Sorensen, A., Swift, B., & et al. (2011-2014).
Extempore Google group. Retrieved
from

SysMus14 – International Conference of Students of Systematic Musicology - Proceedings

	

	 10

https://groups.google.com/forum/#!for
um/extemporelang

Swift, B. (2011-2014). Extempore tutorials.
Retrieved from
http://benswift.me/extempore-docs/
- DSP basics in Extempore
- Loading and using a sampler
- Playing an instrument (part I)
- Playing an instrument (part II)

Wang, G., Cook, P. et al. (2003). Chuck: A
concurrent, on-the-fly audio program-
ming language. Proceedings of Interna-
tional Computer Music Conference,
219–226. Citeseer.

Fay-Wolfe, V. (2003). Computer Program-
ming. Retrieved from
http://homepage.cs.uri.edu/faculty/wolf
e/book/Readings/Reading13.htm

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 The first programming with Extempore took place
around the 15th of July 2014.
2 The title of the thesis is Live Coding: An Artist Move-
ment and Elementary Musical Programming with Extem-
pore.	
3 Andrew Sorensen is a computer scientist and research-
er, computer artist and composer of electronic music. He
currently works at the Queensland University of Technol-
ogy in Brisbane, Australia.
4 Sorensen’s first live coding environment which is strict-
ly Scheme-based and no longer maintained. A Study in
Keith and other coding examples are available online
(Sorensen 2010).
5 Scheme is a dialect of the Lisp family. It appeared in
1975 and has since had a long tradition in computer
science education (MIT, Yale, Stanford). Scheme is a
high-level functional programming language in polish/
prefix notation. Brackets, in which the operands follow
the operator, surround each function as well as its sub-
functions (Dybvig 2009).
6 In Scheme, lambda is a syntactic form creating any
procedure and always antecedes the following formal
parameters of the procedure. It can thus be understood
as a signaling symbol (Dybvig 2009).
7 Liszt’s Orage from Années de Pèlerinage – Première
Année: Suisse technically focuses on quick and strong
octave scales. Compared to practicing these same scales
in the context of an etude (e.g. Czerny), a pianist’s ex-
perience is greatly enhanced and motivated.
8 The tintinnabuli style of composition has been created
by Arvo Pärt and consists of two different types of voic-
es. One roams around the notes of a specific root triad
(tintinnabular voice; here the middle voice in A minor)
while the other follows a diatonic scale-step motion (here
top and bottom voices in harmonic D minor). The name
tintinnabuli comes from tintinnabulum, Latin for “(little)
bell”. Pärt was inspired by the old technique of Gregorian

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
chants; his compositions are generally minimalistic and
of slow to moderate tempo (MGG 2005).
9 Because of this downward harmonic D minor scale, the
intervals of transposition may vary between either a
minor or a major third. The sequence of each chorale’s
starting point is E, C#, A, F, D, B♭, G etc. (taking the top
voice of the chorale as orientation).
10 The mathematical formula herein is based on the ver-
tical structure of the A minor triad standing as an axis,
while the choral structure (in tintinnabuli style) performs
a horizontal figure primarily based on the harmonic D
minor scale. The chorale is itself cut in two, the second
part mirroring the first’s notes as a retrogradation (MGG
2005).
11 Here, DSP is the abbreviation for Digital Signal Pro-
cessing as used by algorithm developers (Smith 1997).
12 The two instruments bound to the DSP output are
drums and synth, the only ones used for this program-
ming. The outer sub-fragment (“(+ (…))”) presents the
location in the function where added instruments are
enumerated. If only one instrument is needed, the outer
sub-fragment is not necessary. If more instruments are
used, their information needs to be included in the same
fashion as the synth’s and drums’.	
13 The respective sampler needs to be loaded and bound
to the DSP output (as already done, see setup section).
14 This also helps to decrease the amount of structures
that are in need of manual activation.
15 It is still to be further investigated, whether a more
authentic structure can be found.
16 Although in low-to-medium volume, the beat loop will
still prevail in the sections that revolve around it (in
between chorales).
17 This loop structure differs from the beat pattern’s loop.
The latter continuously plays a beat while activated (con-
tinuous loop), while the melody loop stops after all notes
from the pitch list have been used up (loop with termina-
tion).
18 Otherwise, a rift forms between the function that uses
the „new“ metronome and the one working with Extem-
pore’s internal one which is much slower (60 bpm).
19 See endn.9
20 Extempore provides a library that manages anything
related to pitch class. Two pitch class sets (pc for the top
and bottom voice, pc for the entire structure’s downward
progression (see endn.9) need to be intertwined.
21 Swift explains how to build a simple drone organ in
one of his tutorials (Swift 2011-2014).
22 There is always more than just one way. Also see
section about the chorale’s programming.
23 Here, exemplary: the drone sounds with the beat
pattern and the chorale.
24 Rectify (2013), SundanceTV, created by Ray McKin-
non: Season 2, episode 16, Unhinged.	

